Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(6): 3375-3389, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38366792

RESUMO

The i-motif is an intriguing non-canonical DNA structure, whose role in the cell is still controversial. Development of methods to study i-motif formation under physiological conditions in living cells is necessary to study its potential biological functions. The cytosine analog 1,3-diaza-2-oxophenoxazine (tCO) is a fluorescent nucleobase able to form either hemiprotonated base pairs with cytosine residues, or neutral base pairs with guanines. We show here that when tCO is incorporated in the proximity of a G:C:G:C minor groove tetrad, it induces a strong thermal and pH stabilization, resulting in i-motifs with Tm of 39ºC at neutral pH. The structural determination by NMR methods reveals that the enhanced stability is due to a large stacking interaction between the guanines of the tetrad with the tCO nucleobase, which forms a tCO:C+ in the folded structure at unusually-high pHs, leading to an increased quenching in its fluorescence at neutral conditions. This quenching is much lower when tCO is base-paired to guanines and totally disappears when the oligonucleotide is unfolded. By taking profit of this property, we have been able to monitor i-motif folding in cells.


Assuntos
Citosina , DNA , Pareamento de Bases , Citosina/análogos & derivados , DNA/química , Conformação de Ácido Nucleico , Oxazinas/química , Oxazinas/metabolismo , Células HeLa , Humanos , Fluorescência
2.
J Am Chem Soc ; 145(6): 3696-3705, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36745195

RESUMO

We study here a DNA oligonucleotide having the ability to form two different i-motif structures whose relative stability depends on pH and temperature. The major species at neutral pH is stabilized by two C:C+ base pairs capped by two minor groove G:C:G:C tetrads. The high pH and thermal stability of this structure are mainly due to the favorable effect of the minor groove tetrads on their adjacent positively charged C:C+ base pairs. At pH 5, we observe a more elongated i-motif structure consisting of four C:C+ base pairs capped by two G:T:G:T tetrads. Molecular dynamics calculations show that the conformational transition between the two structures is driven by the protonation state of key cytosines. In spite of large conformational differences, the transition between the acidic and neutral structures can occur without unfolding of the i-motif. These results represent the first case of a conformational switch between two different i-motif structures and illustrate the dramatic pH-dependent plasticity of this fascinating DNA motif.


Assuntos
DNA , Quadruplex G , Humanos , Conformação de Ácido Nucleico , DNA/química , Pareamento de Bases , Concentração de Íons de Hidrogênio
3.
Molecules ; 27(16)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36014524

RESUMO

Tetrads (or quartets) are arrangements of four nucleobases commonly involved in the stability of four-stranded nucleic acids structures. Four-stranded or quadruplex structures have attracted enormous attention in the last few years, being the most extensively studied guanine quadruplex (G-quadruplex). Consequently, the G-tetrad is the most common and well-known tetrad. However, this is not the only possible arrangement of four nucleobases. A number of tetrads formed by the different nucleobases have been observed in experimental structures. In most cases, these tetrads occur in the context of G-quadruplex structures, either inserted between G-quartets, or as capping elements at the sides of the G-quadruplex core. In other cases, however, non-G tetrads are found in more unusual four stranded structures, such as i-motifs, or different types of peculiar fold-back structures. In this report, we review the diversity of these non-canonical tetrads, and the structural context in which they have been found.


Assuntos
Quadruplex G , Guanina/química , Modelos Moleculares , Conformação de Ácido Nucleico
4.
J Am Chem Soc ; 143(33): 12919-12923, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34370473

RESUMO

We report here the three-dimensional structure of an i-motif/duplex junction, determined by NMR methods at neutral pH. By including a minor groove tetrad at one side of the C:C+ stack of a monomeric i-motif, and a stem/loop hairpin at the other side, we have designed stable DNA constructs in which i-DNA and B-DNA regions coexist in a wide range of experimental conditions. This study demonstrates that i- and B-DNA are structurally compatible, giving rise to a distinctive fold with peculiar groove shapes. The effect of different residues at the i-motif/duplex interface has been explored. We also show that these constructs can be adapted to sequences of biological relevance, like that found in the promoter region of the KRAS oncogene.

5.
J Am Chem Soc ; 139(40): 13985-13988, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28933543

RESUMO

We report here the solution structure of several repetitive DNA sequences containing d(TCGTTCCGT) and related repeats. At physiological pH, these sequences fold into i-motif like quadruplexes in which every two repeats a globular structure is stabilized by two hemiprotonated C:C+ base pairs, flanked by two minor groove tetrads resulting from the association of G:C or G:T base pairs. The interaction between the minor groove tetrads and the nearby C:C+ base pairs affords a strong stabilization, which results in effective pHT values above 7.5. Longer sequences with more than two repeats are able to fold in tandem, forming a rosary bead-like structure. Bioinformatics analysis shows that these sequences are prevalent in the human genome, and are present in development-related genes.


Assuntos
DNA/química , Genoma Humano , Sequências Repetitivas de Ácido Nucleico , Pareamento de Bases , Sequência de Bases , Quadruplex G , Humanos , Concentração de Íons de Hidrogênio , Modelos Moleculares , Conformação de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...